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Abstract 

Background:  Patients with ulcerative colitis are at an increased risk of developing colorectal cancer with a pro-
longed disease course. Many studies have shown that alterations in the immune microenvironment play a key role in 
ulcerative colitis-associated colorectal cancer. Additionally, competing endogenous RNAs have important functions in 
immunoregulation, affecting inflammation and tumorigenesis. However, the complexity and behavioral characteris-
tics of the competing endogenous RNA immunoregulatory network in ulcerative colitis-associated colorectal cancer 
remain unclear. We constructed a competing endogenous RNA immunoregulatory network to discover and validate 
a novel competing endogenous RNA immunoregulatory axis to provide insight into ulcerative colitis-associated colo-
rectal cancer progression.

Methods:  The competing endogenous RNA immunoregulatory network was constructed using differential expres-
sion analysis, weighted gene co-expression network analysis, and immune-related genes. Cmap was used to identify 
small-molecule drugs with therapeutic potential in ulcerative colitis-associated colorectal cancer. The ulcerative 
colitis-associated colorectal cancer-related pathways were identified by gene set variation and enrichment analysis. 
CIBERSORT, single-sample Gene Set Enrichment Analysis, and xCell were used to evaluate the infiltration of immune 
cells and screen hub immunocytes. The competing endogenous RNA immunoregulatory axis was identified by cor-
relation analysis.

Results:  We identified 130 hub immune genes and constructed a competing endogenous RNA immunoregulatory 
network consisting of 56 long non-coding RNAs, four microRNAs, and six targeted hub immune genes. Four small-
molecule drugs exerted potential therapeutic effects by reversing the expression of hub immune genes. Pathway 
analysis showed that the NF-κB pathway was significantly enriched. Neutrophils were identified as hub immunocytes, 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  lianlei2@mail.sysu.edu.cn
†Shi Yin, Xianzhe Li and Zhizhong Xiong have contributed equally to this 
work
1 Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital 
of Sun Yat-sen University, Guangzhou, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8895-7792
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12876-022-02252-7&domain=pdf


Page 2 of 16Yin et al. BMC Gastroenterology          (2022) 22:188 

Background
Ulcerative colitis (UC) is a chronic, recurrent, and intes-
tinal inflammatory disease; however, its pathogenesis 
remains unclear. It is generally considered that the intes-
tinal mucosal immune system of patients with UC pro-
duces abnormal amplification of the immune response 
to intestinal microbial antigens in a specific environ-
ment, which can cause intestinal mucosal inflammatory 
damage [1]. The imbalance between inflammation and 
mucosal immunity is an important feature of colorectal 
carcinogenesis [2]. Therefore, patients with UC have an 
increased risk of UC-associated colorectal cancer (CAC).

Although an increasing number of studies have inves-
tigated coding gene-related biomarkers in CAC, pro-
tein-coding genes only account for 2% of the human 
genome. The competitive regulatory crosstalk of dif-
ferent molecular species, especially the competition 
between protein-coding and non-coding RNA tran-
scripts, is a key link in the occurrence of disease [3, 4]. 
MicroRNAs (miRNAs), as an abundant class of small, 
non-coding, single-stranded oligoribonucleotides, act as 
regulators in various cellular processes and function as 
sequence-specific silencers of target gene transcription 
after binding, thereby affecting the expression levels of 
more than half of all protein-coding genes [5, 6]. There-
fore, Salmena et  al. [7] proposed the competing endog-
enous RNA (ceRNA) hypothesis, which posits that most 
RNA molecules act in a “many-to-many” manner. As 
each miRNA molecule may potentially target miRNA 
response elements on multiple messenger RNA (mRNA) 
molecules, each mRNA molecule can be targeted by mul-
tiple miRNA molecules [8]. This suggests that miRNA 
molecules have a pivotal role in competitively regulat-
ing crosstalk and lead to gene silencing by binding to 
mRNAs, and that ceRNA regulates gene expression by 
competitively binding to miRNAs.

Numerous ceRNA studies in different diseases (ie 
tumors, inflammatory bowel diseases, liver fibrosis, and 
cardiovascular diseases) have suggested that ceRNA 
can influence dysregulation of the immune microen-
vironment by regulating the interaction of different 
types of RNAs, thereby promoting the occurrence and 
development of diseases [9–15]. However, the spe-
cific immunoregulatory mechanisms in the CAC pro-
cess remain unclear. We hypothesized that the ceRNA 

regulatory axis can alter the immune microenviron-
ment during the development of CAC.

To verify this hypothesis, we integrated immune-
related genes (IRGs), weighted gene co-expression net-
work analysis (WGCNA), and differential expression 
analysis results, and then constructed a ceRNA immu-
noregulatory network based on the principle of reverse 
prediction. Subsequently, small-molecule medicines 
with possible applications in therapy for CAC were 
investigated. Pathway enrichment analysis and immune 
cell infiltration analysis were performed to identify the 
key pathways and immune cells. Correlation analysis 
was conducted to identify the key ceRNA regulatory 
axis from the network. This study provides a founda-
tion for improving the understanding of the patho-
physiological processes of CAC and insights into the 
variations in the immunological microenvironment of 
the disease.

Methods
Data acquisition and preprocessing
The research and design flowchart is shown in Fig.  1. 
Gene expression profiles of datasets GSE37283 [16] and 
GSE68306 [17] were downloaded from the National 
Center for Biotechnology Information (NCBI).

Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/). The GSE37283 dataset 
contains mRNA microarray raw data from 20 colonic 
mucosal samples (five normal control [NC] samples, 
four UC samples, and 11 UC samples harboring remote 
neoplasia). The GSE68306 dataset contains miRNA nor-
malized expression matrix data of 11 UC-associated neo-
plastic samples and 16 NC samples. Raw CEL data (data 
storage format) were parsed using the ‘affy’ package in 
R [18]. The robust multiarray average (RMA) algorithm 
background correction and quantile normalization were 
performed on gene expression profiles with the ‘oligo’ 
package in R [19]. The annotation package of the micro-
array platform GPL13158 was used to convert the probe 
IDs into gene symbols. Chip quality was assessed using 
the ‘arrayQualityMetrics’ package in R [20]. Moreo-
ver, 1793 IRGs were downloaded from the Immunology 
Database and Analysis Portal database (https://​immpo​rt.​
niaid.​nih.​gov), which covers 17 immune categories [21].

and IL6ST was significantly positively correlated with the neutrophil count. In addition, NEAT1 may serve as a compet-
ing endogenous RNA to sponge miR-1-3p and promote IL6ST expression.

Conclusions:  The competing endogenous RNA immunoregulatory axis may regulate neutrophil infiltration, affecting 
the occurrence of ulcerative colitis-associated colorectal cancer.

Keywords:  NEAT1, miR-1-3p, IL6ST, Immune microenvironment, Ulcerative colitis-associated colorectal carcinoma

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://immport.niaid.nih.gov
https://immport.niaid.nih.gov


Page 3 of 16Yin et al. BMC Gastroenterology          (2022) 22:188 	

Construction of weighted gene co‑expression gene 
network
The ‘WGCNA’ package in R was used to analyze the co-
expression network of the top 25% gene variants in the 
GSE37283 dataset [22]. The adjacency matrix was con-
structed by calculating Pearson’s correlation coefficient. 
Subsequently, a scale-free co-expression network based 
on the soft threshold parameter β was established. The 
adjacency matrix was converted to a topological over-
lap matrix (TOM) by comparing the weighted corre-
lation of the two nodes with the others. Hierarchical 
clustering of dissimilarity TOM (dissTOM = 1 − TOM) 
rendered similar gene expression levels in the same 
gene module. Next, the dynamic cut tree algorithm was 
used to further partition the modules. Additionally, 
module eigengenes (MEs) and gene significance (GS) 
were used to identify modules associated with CAC. 
MEs represent the principal component of all gene 
expression levels in individual modules. GS was consid-
ered as the mediated p-value for each gene, represent-
ing the correlation between gene expression and CAC.

Differential expression analysis and identification of hub 
immune genes
We analyzed the differentially expressed mRNAs and 
miRNAs between CAC and NC samples using the classi-
cal Bayesian methodology with the ‘limma’ package in R 
[23]. In GSE37283, the cut-off criteria were set at p < 0.05 
and |log2fold-change (FC)|> 1. In GSE68306, we adjusted 
the threshold of differential expression to p < 0.05 and 
|log2FC|> 0.5, allowing the results to be optimized. The 
differentially expressed mRNAs, IRGs, and CAC-related 
module genes in WGCNA were intersected to obtain the 
differentially expressed hub immune genes (HIGs), which 
were visualized in a Venn diagram [24].

Small‑molecule drug prediction
The Cmap database (http://​www.​broad​insti​tute.​org) 
includes and collates 6100 gene expression profiles from 
7056 microarray datasets, covering 1309 Food and Drug 
Administration-approved small-molecule drugs [25]. The 
database is commonly used to predict potential drugs 
for treating diseases and repurposing existing drugs. 

Fig. 1  Research and design flow chart. UC ulcerative colitis, NC normal control, CAC​ ulcerative colitis-associated colorectal cancer, DEGs differentially 
expressed genes, IRGs immune-related genes, DEMs differentially expressed micro RNAs, HIGs hub immune genes

http://www.broadinstitute.org
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Uploading the HIGs into the Cmap database resulted in 
connectivity scores for the corresponding small-molecule 
drugs with values between + 1 and − 1. A positive con-
nectivity score indicated that the small-molecule drug 
induced gene expression, whereas a negative connectiv-
ity score suggested that specific drugs could reverse gene 
expression patterns. Therefore, the screening criteria for 
potential therapeutic drugs were enrichment < −0.7, and 
p < 0.01. The molecular structures of potential therapeu-
tic drugs were displayed using the PubChem database 
(https://​pubch​em.​ncbi.​nlm.​nih.​gov/) [26].

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) and gene set vari-
ation analysis (GSVA) are two types of gene enrichment 
methods [27, 28], the former estimates the enrichment 
of pathways in phenotypic genes according to the back-
ground gene set, whereas the latter transforms the gene 
expression matrix into a gene set enrichment matrix 
using an unsupervised method. We downloaded the hall-
mark gene set from the Molecular Signatures Database 
(MSigDB; https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​
index.​jsp) for use as reference [29]. The ‘clusterpProfiler’ 
package in R was used for GSEA and visualization [30]. 
The p and q values were obtained by simulating permuta-
tions of 1000 random genomes, and p < 0.05 and q < 0.05 
were used as screening criteria. For GSVA, we used the 
‘gsva’ and ‘limma’ packages in R to screen pathways with 
significant differences (p < 0.05 and |log2FC|> 0.5), and 
the results were displayed with the ‘pheatmap’ package 
[23, 28].

Immune cell infiltration analysis
Many algorithms have been developed to evaluate the 
infiltration level of immune cell populations, among 
which CIBERSORT, single-sample GSEA (ssGSEA), and 
xCell are the most widely used research methods [31, 
32]. For CIBERSORT, we estimated the proportion of 22 
immune cell populations in the samples using the sup-
port vector regression machine learning method with 
the ‘cibersort’ package in R [33]. For ssGSEA, we com-
pared 28 types of immune cell characteristic gene sets 
and converted the gene expression values of samples into 
the enrichment fraction to obtain the relative abundance 
of immune cells in samples using the ‘gsva’ package in 
R [34]. For xCell, we performed a cell type enrichment 
analysis from the gene expression data of 64 immune 
and stromal cell types using the ‘xcell’ package in R. We 
subsequently identified immune cell types that were sig-
nificantly different in CAC and normal tissue using the 
Wilcoxon test.

ceRNA network construction
ENCORI (http://​starb​ase.​sysu.​edu.​cn/) is a comprehen-
sive database that provides experimentally supported 
miRNA-mRNA and miRNA-long non-coding RNA 
(lncRNA) interaction networks [35]. In addition, it inte-
grates information from multiple miRNA-mRNA pre-
diction databases, including PITA, miRmap, miRanda, 
and TargetScan. To ensure the accuracy of predicting 
target genes, only those that existed in the four above-
mentioned databases were included in the regulatory 
network. Subsequently, differentially expressed mRNAs 
(DEmRNAs) were intersected with predicted mRNAs to 
explore differentially expressed miRNA-mRNA regula-
tory relationship pairs in CAC. Next, the roles of differ-
entially expressed miRNAs (DEmiRNAs) and lncRNAs 
were predicted using the ENCORI and LncBase data-
bases [36]. The network was constructed by screening 
out the lncRNA-miRNA-mRNA regulatory axis that 
was regulated by the same DEmiRNAs and visualized in 
Cytoscape 3.8.2 [37]. To further identify the key targets 
in the process of CAC, the Cytoscape plugin ‘Cytohubba’ 
was used to perform non-weighted parameter analy-
sis of node connectivity in the network [38]. Finally, the 
subnetwork was screened according to the connectivity 
score. Based on the ceRNA hypothesis, lncRNA plays a 
sponge adsorption role in the cytoplasm and is positively 
correlated with mRNA expression levels. Therefore, we 
used LNCipedia (https://​Incip​edia.​org/) to obtain the 
lncRNA sequence and determine its cellular location 
using the lncLocator database (http://​www.​csbio.​sjtu.​
edu.​cn/​bioinf/​lncLo​cator/) [39, 40]. Co-expression analy-
sis of lncRNA and mRNA was performed based on The 
Cancer Genome Atlas colorectal cancer data compiled 
by the ENCORI database. Additionally, CentroidFold 
(http://​rtools.​cbrc.​jp/​centr​oidfo​ld/) was used to predict 
the secondary structure of the miRNA precursor stem-
loop [41]. Statistical significance was set at p < 0.05.

Statistical analysis
Data analysis was performed with R 4.0.3. The Wilcoxon 
test was used to compare the types of immune cells in 
the CAC and NC groups. Spearman’s correlation analy-
sis was used to assess the correlation between the two 
groups. The chi-square test was used for categorical vari-
ables. Statistical significance was set at p < 0.05.

Results
Chip quality analysis
To evaluate the quality of the chip and increase the reli-
ability of the results, we compared the differences in raw 
data obtained from the GSE37283 dataset of the GEO 
database before and after correction using boxplots, 

https://pubchem.ncbi.nlm.nih.gov/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://starbase.sysu.edu.cn/
https://Incipedia.org/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
http://rtools.cbrc.jp/centroidfold/
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smoothed histograms, principal component analysis 
(PCA), and array clustering heatmaps. Boxplots detected 
outliers by calculating the distribution of each array using 
pooled data, whereas the smoothed histograms estimated 
the density of data to indicate the chip quality-related 
phenomenon. We found many raw data outliers and 
large differences in density curves among samples that 
required normalization to eliminate the effect of system-
atic errors (Fig. 2A–D). Therefore, PCA and array cluster-
ing heatmaps were used to describe batch effects among 
samples (Fig. 2E–G). Although the influence of the batch 
effect was markedly reduced, restoring the actual bio-
logical characteristics of the chip, there were still two 
abnormal samples (GSM915458 and GSM915469) in the 
corrected data (Table  1). Overall, these results showed 
that two outliers must be removed to ensure the reliabil-
ity of subsequent analysis based on the chip quality con-
trol method.

Weighted co‑expression network construction 
and identification of key modules
After the analysis of variance (ANOVA), the top 25% 
of genes (4980 genes) from the 18 samples screened 
for sequencing were subjected to WGCNA to identify 
genes highly associated with CAC. To define the adja-
cency matrix, we introduced weight parameters when 
soft-thresholded β = 16 (scale-free R2 > 0.8) and scale-
free networks were constructed (Fig.  3A). The dynamic 
tree-cutting algorithm classified the 4980 genes into 
10 co-expression modules (Fig.  3B; Additional file  1: 
Table S1). By calculating the correlation of each module 
with the corresponding clinical features, we found that 
genes in the MEturquoise module were most strongly 
associated with CAC (r = 0.84, p < 0.01) and were iden-
tified as key modules in the CAC process (Fig.  3C, D). 
The MEturquoise module contained 2264 genes. Further 
statistical tests on the gene significance (GS) of MEtur-
quoise module membership (MM) and CAC showed 
that 2264 genes contributed significantly to the mem-
bership of the MEturquoise module and CAC (r = 0.87, 
p < 0.01) (Fig. 3E). Moreover, hierarchical clustering anal-
ysis of gene expression levels in the MEturquoise module 
revealed that gene expression in the CAC group differed 
from that in the UC and NC groups (Fig. 3F). Therefore, 
these genes co-expressed with CAC require further study.

GSVA and GSEA reveal CAC‑related pathways
Using p < 0.05, and |log2FC|> 0.5, 12 pathways with sig-
nificant changes were screened out (Fig.  4A; Table  2). 
According to the threshold value (p adjust < 0.05), we 
obtained the top 10 pathways with normalized enrich-
ment scores from the results of GSEA. By combining the 
results of GSEA and GSVA, we found that TNFα signal-
ing via the NF-κB pathway showed significant changes in 
CAC and had the highest degree of enrichment (normal-
ize enrichment score: 2.285) (Fig. 4B).

Identification of CAC‑related hub immune genes and small 
molecule therapeutic drug prediction
We performed differential expression analysis of the 
GSE37283 microarray expression matrix and filtered out 
1271 DEGs, which met the criteria (p < 0.05, |log2FC|> 1) 
between the CAC and NC groups; of these genes, 1012 
were upregulated and 258 were downregulated (Fig. 5A). 
Subsequent hierarchical clustering analysis of the 1270 
DEGs revealed significantly different expression between 
the two groups (Fig.  5B). We then intersected 1793 
immune genes downloaded from the Immport database, 
2252 genes obtained from CAC modules in WGCNA, 
and DEGs to identify 130 HIGs (Fig. 5C; Additional file 1: 
Table  S2). Based on the importance of HIGs in CAC, 
we explored agents that could reverse gene expression 
and showed therapeutic potential. Four drugs from the 
Cmap database met the criteria (enrichment < −0.7 and 
p < 0.01), and their three-dimensional molecular struc-
tures were displayed in the PubChem database (Fig. 5D–
G; Table 3).

Identification of differentially expressed miRNA and ceRNA 
network construction
We obtained 23 DEmiRNAs (17 upregulated and six 
downregulated) from the GSE68306 dataset using the 
same differential analysis method (Fig. 6A, B). Guided 
by the ceRNA hypothesis, we reversely predicted the 
mRNAs and lncRNAs downstream and upstream of 
the 23 miRNAs, respectively. Based on the ENCORI 
database, DEmiRNAs were matched with the poten-
tial mRNAs. Next, we matched the predicted tar-
get genes with the HIGs and identified eight pairs of 
miRNA-mRNAs, which contained four DEmiRNAs 
and six mRNAs. Next, based on the predicted lncR-
NAs upstream of the four DEmiRNAs, we used the 

(See figure on next page.)
Fig. 2  Chip data correction and evaluation. Boxplots show gene expression levels before (A) and after (B) correction. Density plots show estimates 
of data density before (C) and after (D) normalization. PCA is a dimension reduction and visualization technique used to project the multivariate 
data vector of each array into a two-dimensional plot, and thus, the spatial arrangement at the midpoint of the plot reflects similarity between 
the overall data. PCA before processing (E) and shows after processing (F). Heatmaps before correction (G) and after correction (H) show the array 
aggregation caused by expected biological or unexpected experimental factors (batch effects). Outliers are denoted by *. PCA principal component 
analysis
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Fig. 2  (See legend on previous page.)
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intersection of the ENCORI and LncBase databases 
to identify 63 pairs of lncRNAs-miRNAs, including 56 
lncRNAs. Finally, we integrated 56 lncRNAs, four miR-
NAs, and six targeted HIGs into a lncRNA-miRNA-
mRNA network (Fig.  6C). Each node of the network 
was subjected to connectivity analysis using cyto-
hubba, resulting in a subnetwork containing 10 nodes 
(Fig. 6D; Table 4). Overall, the ceRNA regulatory axis 
in the subnetwork may be closely related to the occur-
rence and development of CAC (Fig. 6E).

Immune landscape of CAC​
Previous studies demonstrated that inflammation or 
tumor initiation and progression are associated with the 
immune microenvironment and that immunocytes are 
key components in the microenvironment [42]. There-
fore, exploration of the immune landscape in CAC is 
highly warranted. We first performed ssGSEA to quan-
tify the relative abundance of immune cell infiltration in 
the CAC group compared to in the NC group (Fig. 7A). 
Wilcoxon analysis showed that 22 types of immune 
cells were significantly different between the two groups 
(p < 0.05) (Fig. 7B). Subsequently, CIBERSORT and xCell 
were used to evaluate immune cell infiltration and reduce 
bias before visualization in heatmaps (Fig.  7C, D). The 
most important observation from data comparison was 
that the neutrophils were the central immune cells, as 
they were the only cells showing the same trend in differ-
ential expression across the three algorithms.

Identification and verification 
of a ceRNA‑immunoregulation axis
Overall, the significant difference between the NF-κB 
pathway and neutrophils in CAC indirectly demon-
strated that both factors play critical roles in CAC 
formation. Consequently, we carried out correlation 
analysis, which showed that the NF-κB pathway was 
significantly positively correlated with neutrophils 
(r = 0.79, p < 0.01) (Fig.  8A). We also intersected the 
core genes enriched in the NF-κB pathway with HIGs 
to obtain two key immune genes, IL6ST and TNFAIP3. 
Of these, IL6ST was significantly positively correlated 
with neutrophils (r = 0.75, p < 0.01) (Fig.  8B). To fur-
ther analyze the regulatory mechanism of IL6ST at the 
transcriptional level in the ceRNA immunoregulatory 
network, we identified two upstream lncRNAs, NEAT1 
and KCNQ1OT1 that regulate IL6ST. The mechanism 
of lncRNA is related to its localization in cells [43]. 
We predicted the subcellular localization of lncRNAs 
using the lnclocator algorithm. NEAT1 was mainly 
distributed in the cytoplasm, whereas KCNQ1OT1 in 
the nucleus (Fig.  8C). Using the ENCORI database, 

Table 1  Overview of chip quality control

Columns named as *1, *2, and *3 indicate calls from different outlier detection 
methods: (1) outlier detection by boxplots; (2) outlier detection by distances 
between arrays (density plots); and (3) batch effect detection using principal 
component analysis plots and array clustering heatmaps. “√” indicates the 
presence of an outlier; “–” indicates the absence of an outlier

UC ulcerative colitis, NC normal control, CAC​ ulcerative colitis-associated 
colorectal cancer

Array Samplenames *1 *2 *3 Group

1 GSM915451 – – – UC

2 GSM915452 – – – UC

3 GSM915453 – – – UC

4 GSM915454 – – – UC

5 GSM915455 – – – NC

6 GSM915456 – – – NC

7 GSM915457 – – – NC

8 GSM915458 – – √ NC

9 GSM915459 – – – NC

10 GSM915460 – – – CAC​

11 GSM915461 – – – CAC​

12 GSM915462 – – – CAC​

13 GSM915463 – – – CAC​

14 GSM915464 – – – CAC​

15 GSM915465 – – – CAC​

16 GSM915466 – – – CAC​

17 GSM915467 – – – CAC​

18 GSM915468 – – – CAC​

19 GSM915469 – – √ CAC​

20 GSM915470 – – – CAC​

Fig. 3  Construction of weighted co-expression network and module analysis. A Scale-free index under various soft threshold power (β) and 
average connectivity analysis. B Cluster dendrogram of co-expression network module. Each color represents one specific co-expression module. 
C Heatmap of the correlation between the module eigengenes and clinical traits. Each row represents a color module and every column a clinical 
trait (UC, NC, and CAC). Each cell contains the corresponding correlation and p-value. Statistical significance was set at p < 0.05. D Dendrogram (top) 
and heatmap (bottom) display the strength of correlations between CAC and other modules. Red represents a higher positive adjacency and blue 
a lower adjacency. E Correlation between module membership of turquoise module and gene significance with CAC. F Heatmap with clusters of 
DEGs in turquoise module among the three different groups. UC ulcerative colitis, NC normal control, CAC​ ulcerative colitis-associated colorectal 
cancer, DEGs differentially expressed genes

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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we verified that NEAT1 promotes the expression of 
the target mRNA IL6ST (Fig.  8D). We then predicted 
the precursor stem loop structures for the two target 
miRNAs of NEAT1 (Additional file  2: Fig. S1). Com-
pared with miR-133a-3p, miR-1-3p had the highest 

connectivity score in the ceRNA network and a higher 
predictive score for interacting with NEAT1. These 
results indicate that NEAT1 absorbs miR-1-3p through 
sponge action to increase the expression of IL6ST 
(Fig. 8E).

Fig. 4  CAC-related pathways analysis. A Heatmap showing significantly different pathways in GSVA; p < 0.05 and |log2FC|> 0.5. B Ridge plots with 
normalized enrichment score displaying the 10 most enriched pathways of CAC in GSEA. CAC​ ulcerative colitis-associated colorectal cancer, GSVA 
gene set variation analysis, NES normalized enrichment scores, GSEA gene set enrichment analysis

Table 2  Differentially expressed pathways in gene set variation analysis

Pathway name Type Log2FC p-value Adj.p.val

INTERFERON_ALPHA_RESPONSE Up 0.634121921 4.59E−05 0.000286711

INTERFERON_GAMMA_RESPONSE Up 0.624598993 2.25E−05 0.000160714

IL6_JAK_STAT3_SIGNALING Up 0.607187614 2.20E−05 0.000160714

UNFOLDED_PROTEIN_RESPONSE Up 0.582015106 2.21E−06 6.29E−05

MTORC1_SIGNALING Up 0.574645409 2.51E−06 6.29E−05

TNFA_SIGNALING_VIA_NFKB Up 0.565526025 0.000174553 0.000809951

ALLOGRAFT_REJECTION Up 0.555113783 8.06E−05 0.00044773

MYC_TARGETS_V1 Up 0.535347867 1.26E−05 0.000156916

REACTIVE_OXYGEN_SPECIES_PATHWAY​ Up 0.517546923 8.42E−06 0.00014027

EPITHELIAL_MESENCHYMAL_TRANSITION Up 0.508782095 0.000178189 0.000809951

INFLAMMATORY_RESPONSE Up 0.505207341 0.000244903 0.000941935

COMPLEMENT Up 0.502336993 1.98E−05 0.000160714
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Discussion
UC is a chronic inflammatory disease of unknown etiol-
ogy, and its cumulative incidence of progressing to CAC 
has markedly increased over the years [44]. Because of 

chronic inflammation caused by UC, various layers of the 
intestinal wall are infiltrated by immune cells, forming 
an immune microenvironment and participating in the 
induction of CAC through the production of cytokines 

Fig. 5  Identification of HIGs and small-molecule therapeutic drugs. Volcano plot (A) and heatmap (B) of DEGs between CAC and NC, p < 0.05, 
|log2FC|> 1. C Venn diagram displaying genes overlap in IRGs, GSEA and WGCNA results. D–G Prediction results of potential small-molecule drugs 
for treating CAC based on HIGs. HIGs hub immune genes, DEGs differentially expressed genes, CAC​ ulcerative colitis-associated colorectal cancer, NC 
normal control, IRGs immune-related genes, GSEA gene set enrichment analysis, WGCNA weighted gene co-expression network analysis

Table 3  Potential drugs with therapeutic potential for ulcerative colitis-associated colorectal cancer

Mean, average connectivity score; N number of instances

Cmap name Mean N Enrichment score p Specificity score Percent 
non-
null

Metronidazole  − 0.37 5  − 0.836 0.00032 0 80

3-Acetamidocoumarin  − 0.252 4  − 0.819 0.00203 0.039 50

Heptaminol  − 0.281 5  − 0.735 0.00272 0.0206 60

Isometheptene  − 0.23 4  − 0.799 0.00322 0.0138 50
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Fig. 6  Construction of ceRNA immunoregulation network. Volcano plot (A) and heatmap (B) of DEMs between CAC and NC, p < 0.05, |log2FC|> 0.5. 
C Potential lncRNA-miRNA-mRNA immunoregulation network in CAC. The diamond represents the lncRNAs; triangle represents the miRNAs; 
and circle represents the mRNAs. Use Cytoscape’s plugin Cytohubba to filter sub-networks (D), and visualize the regulatory relationships of 
sub-networks (E). ceRNA competing endogenous RNA, DEMs differentially expressed miRNAs, CAC​ ulcerative colitis-associated colorectal cancer, NC 
normal control, miRNA micro RNA, mRNA messenger RNA
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and chemokines [45]. However, the underlying mecha-
nisms remain unclear. Here, we explored the role of the 
ceRNA-immunoregulatory axis in the immune regula-
tion of CAC at the transcriptional level.

We integrated three bioinformatics methods, includ-
ing immune gene list, WGCNA, and differential gene 
expression analysis, to identify 130 HIGs. We found that 
metronidazole, 3-acetamidocoumarin, heptaminol, and 
isometheteptene reversed the expression levels of HIGs 
and play a potential role in the treatment of CAC. Com-
pared with the other three drugs not reported in CAC, 
metronidazole has been shown to inhibit the occurrence 
of tumors and reduce the degree of inflammation in CAC 
animal models [46]. Based on the ceRNA hypothesis, we 
predicted miRNAs and lncRNAs using HIGs and con-
structed a ceRNA-immunoregulatory network to better 
understand the CAC-related molecular mechanisms and 
biological phenomena at the transcriptional level.

To determine the underlying mechanisms affecting the 
occurrence of CAC, we analyzed the differences in path-
ways between the CAC and NC groups using two major 
pathway enrichment methods. The results showed that 
the largest number of genes (93 genes) was enriched in 
the NF-κB pathway, revealing that this pathway is closely 
related to CAC. The NF-κB pathway is involved in the 
immune response in  vivo through classical and non-
classical pathways, allowing the massive release of pro-
inflammatory cytokines that cause tissue damage and 
participate in tumor invasion and metastasis by regulat-
ing the expression of angiogenesis-related genes [47–50]. 
A previous study showed that the NF-κB pathway exerts 
a tumor-promoting effect in a CAC mouse model [51].

We further evaluated alterations in the immune micro-
environment of CAC and found that only neutrophils had 

the same expression trend (high in the CAC group and low 
in the NC group) across the three methods used to calcu-
late the degree of immune cell infiltration. These results 
were consistent with those reported in previous studies 
showing that neutrophil infiltration is significantly higher 
in the colonic mucosal layer of a CAC mouse model, 
promoting CAC occurrence by secreting chemokines 
and, consequently, recruiting chemotactic receptors [52, 
53]. Correlation analysis showed that the NF-κB path-
way was positively correlated with neutrophils. Further 
analysis of 93 core genes enriched in the NF-κB pathway 
revealed that IL6ST was positively associated with neu-
trophils. We subsequently screened the miRNAs regulat-
ing IL6ST (miR-1-3p) and its upstream lncRNA from the 
ceRNA network (NEAT1). Previous studies suggested that 
NEAT1 promotes tumor development by downregulating 
target miRNAs. Zhou et al. [54] reported that NEAT1 tar-
gets and downregulates miR-500a-3p, promoting gastric 
cancer cell proliferation and invasion; Huang et  al. [55] 
suggested that NEAT1 promotes pancreatic cancer pro-
gression by negatively regulating miR-506-3p; whereas 
Zhang et  al. [56] showed that upregulation of NEAT1 is 
involved in the proliferation of glioma cells by negatively 
regulating miR-324-5p. However, the role of NEAT1 in 
CAC has rarely been reported. MiR-1-3p, a downstream 
target of NEAT1, has been shown to play a facilitative role 
in tumors. For instance, Peng et al. [57] reported that miR-
1-3p affects gastric cancer cell proliferation by promoting 
the oxygen glycolytic pathway, and Liu et al. [58] indicated 
that downregulation of miR-1-3p expression is involved in 
the growth and motility of lung cancer cells. Our results 
suggest that IL6ST is a target gene of miR-1-3p in CAC. 
IL6ST is a subunit of the IL-6 receptor, and the IL-6/IL-6 
receptor complex only functions by binding to IL6ST [59]. 
Previous studies showed that IL-6 promotes the occur-
rence of CAC by interacting with IL6ST [60]. Our data 
further supported that NEAT1 can competitively bind 
to miR-1-3p and upregulate IL6ST at the transcriptional 
level, affecting the NF-κB pathway and neutrophil infil-
tration as well as promoting the occurrence and develop-
ment of CAC.

We constructed a ceRNA-immunoregulatory net-
work by integrating multiple bioinformatics tools and 
deeply analyzed the alterations of the immune micro-
environment and pathways in the process of CAC. 
Ultimately, we identified a ceRNA immunoregulatory 
axis closely related to CAC. However, our study had 
some limitations; (1) we only used public datasets for 
the analysis, which may be biased because of the lim-
ited sample size. (2) Although we conducted a bioin-
formatic analysis and database prediction, the direct 

Table 4  Competing endogenous RNA immune regulatory 
subnetwork

MCC maximal clique centrality

Name Type Degree MCC

hsa-miR-23a-3p miRNA 25 25

hsa-miR-1-3p miRNA 21 21

hsa-miR-145-5p miRNA 20 20

hsa-miR-133a-3p miRNA 5 5

NEAT1 lncRNA 3 3

IL6ST mRNA 2 2

TGFBR2 mRNA 2 2

MAGI2-AS3 lncRNA 2 2

KCNQ1OT1 lncRNA 2 2

MEG3 lncRNA 2 2
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relationship between the ceRNA immunoregulatory 
axes requires experimental verification. (3) In vivo and 
in  vitro functional experiments are needed to deter-
mine the biological role of the ceRNA regulatory axis 
in CAC. (4) Currently, bioinformatic analysis for the 
prediction of drug utility is limited; however, we believe 
that this study may provide valuable insights in design-
ing drugs to treat CAC.

Conclusion
In conclusion, we identified a ceRNA immunoregula-
tory network of CAC and suggested that the NEAT1/
miR-1-3p/IL6ST regulatory axis participates in the CAC 
process by altering neutrophil infiltration in the immune 
microenvironment. These findings provide a new per-
spective and direction for further exploration of the 
immunoregulatory mechanisms underlying CAC.

Fig. 7  Immune cell infiltration analysis. A Percentage stacked bar chart shows the distribution of 28 immune cells in the CAC and NC group 
samples from the GSE37283 data set. B Results of ssGSEA showed differences in the abundance of immune cells between NC and CAC groups. Blue 
represents the NC group and red the CAC group. The heatmap demonstrates the statistics of immune cell infiltration results by the xCell (C) and 
CIBERSORT (D) algorithms. * indicates statistical significance at p < 0.05. CAC​ ulcerative colitis-associated colorectal cancer, NC normal control, ssGSEA 
single-sample gene set enrichment analysis
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